Les caractéristiques utiles
Le choix d’un écran dépend de nombreux paramètres qui peuvent revêtir plus ou moins d’importance selon vos attentes.
Taille et format de l’écran
La taille de l’écran et son format sont deux critères à ne pas confondre. La taille de l’écran est déterminée par la diagonale de sa dalle (la partie où se trouvent les cristaux liquides qui afficheront l’image). Elle se mesure en pouce (rappelons qu’un pouce vaut 2,54 centimètres).

Le format quant à lui, est le rapport entre la largeur et la hauteur de l’écran. C’est un rapport, il est donc sans unité.
Lorsque la télévision a été créée (c’était évidemment bien avant les ordinateurs), le format par défaut était le 4/3. Avec un écran de ce format, le rapport largeur/hauteur vaut donc 4/3, soit 1,33. Autrement dit, si on note l la largeur de l’écran et h sa hauteur, on a donc : l = 1,33 x h. Il ne reste plus qu’à appliquer le théorème de Pythagore pour obtenir la taille de l’écran.
Le format 4/3 a perduré pendant de nombreuses années, même avec l’arrivée des premiers ordinateurs. Il a été remplacé par le 16/10, lui-même en voie de disparition. De nos jours c’est le format 16/9 qui prédomine, plus proche de la vision humaine (notre champ de vision est plus « panoramique », donc plus proche du 16/9 que du 4/3). Les écrans de télévision (LCD/Plasma) et d’ordinateur tendent tous à s’uniformiser vers ce format.
Résumons les choses à l’aide d’un petit tableau :
Critère |
Définition |
Exemples |
---|---|---|
Taille |
Taille de la diagonale de la dalle (en pouces). |
14″, 15″, 17″, 23″, etc. |
Format |
Rapport entre la largeur et la hauteur de l’écran. |
4/3, 16/10, 16/9 |
Définition et pitch
Sur un écran, les pixels sont organisés en lignes et en colonnes. Le produit entre le nombre de pixels en ligne et celui en colonne donne la définition de l’écran. La définition est donc le nombre de pixels pouvant être affiché à l’écran.
Par exemple, ce nombre peut s’élever à 786 432 pixels. Bon, ce nombre n’étant pas très parlant, on exprime la définition sous forme de produit : 1024×768. Dans ce cas, une ligne va contenir 1024 pixels et une colonne en sera elle composée de 768.
Le pitch d’un écran (aussi appelé pas de perçage) est la plus faible distance entre deux pixels. Le pitch est exprimé en millimètres (bien qu’il soit inférieur à 1 mm).
Critère |
Définition |
Exemples |
---|---|---|
Définition |
Nombre de pixels pouvant être affiché à l’écran. |
800×600, 1024×768, 1280×720, 1440×900, 1920×1080, etc. |
Pitch (pas de perçage) |
Plus faible distance entre deux pixels. |
0.21mm, 0.25mm, 0.28mm, 0.31mm, etc. |
Pour bien comprendre, on peut mettre en relation le pitch avec la taille de l’écran et sa définition. Prenons un exemple avec un écran dont le pitch vaut 0,31 mm et dont les dimensions de la dalle sont de 345,44 mm en largeur par 259,08 mm en hauteur. En largeur, il peut donc y avoir un pixel tous les 0,31 mm et cela sur 345,44 mm. Le nombre de pixels en largeur est donc de 345,44/0,31 soit 1114 pixels (je vous laisse faire le calcul pour la hauteur ). Le produit des nombres de pixels en largeur et en hauteur donne la définition.
En théorie, plus le pitch est petit, plus on peut mettre de pixels dans une même surface et ainsi avoir une image plus détaillée. Mais en réalité, tout dépend de la distance à laquelle on se trouve par rapport à l’écran. Rappelez-vous du petit test que nous avons fait en début de chapitre, lorsque je vous demandais de vous approcher au plus près de votre écran. L’important est que le pitch ne soit ni trop petit, auquel cas les caractères pourraient devenir difficile à lire, ni trop gros car dans ce cas on risquerait de « voir » les pixels :

Luminosité et contraste
La luminosité d’un écran caractérise sa capacité à émettre plus ou moins de lumière. Elle s’exprime en candelas par mètre carré (cd/m²). La candela étant l’unité de l’intensité lumineuse, la luminosité représente donc cette intensité rapportée à la surface de l’écran.
Les écrans actuels ont une luminosité comprise entre 200 et 500 cd/m². Mais attention, cette valeur représente la luminosité maximale de l’écran. Autrement dit, deux écrans aux luminosités affichées différentes pourront être réglés de façon à produire la même intensité lumineuse. Tout dépend de vos préférences et de la lumière régnant dans la pièce. Vous pouvez faire le test avec n’importe quel écran : selon que vous le regardiez en plein jour, volets ouverts ou dans la nuit noire, vous n’aurez pas le même ressenti de la luminosité.
Une caractéristique est très souvent associée à la luminosité : le contraste. Le contraste est le rapport de luminosité entre le pixel le plus sombre et le pixel le plus clair de l’écran. Vous allez me dire que les pixels n’ont jamais la même couleur selon l’image affichée à l’écran… C’est vrai. Le contraste représente en fait la capacité de l’écran à afficher, au sein d’une même image, des pixels de luminosités les plus différentes possibles.
Le contraste s’exprime sous forme d’un rapport, comme par exemple 50 000:1. Cela signifie qu’un tel écran pourrait afficher, en théorie, un pixel cinquante mille fois plus lumineux qu’un autre. Je dis bien « en théorie » parce qu’en réalité, les contrastes sont souvent situés autour de 850:1. Si les constructeurs se vantent d’afficher des niveaux de contrastes si délirants, c’est avant tout pour des raisons marketing.
Comme vous pouvez le constater, contraste et luminosité sont très liés. Lors du réglage de l’écran, ils sont donc très souvent réglés ensemble.
Enfin, une valeur trop souvent absente des caractéristiques données par les constructeurs est lavaleur de noir. C’est une luminosité, elle s’exprime donc en candelas par mètre carré. Dans un monde parfait, un pixel noir aurait une luminosité de 0 cd/m². Seulement, nous ne vivons pas dans un monde parfait… Retenez simplement ceci : plus la valeur de noir sera proche de 0, plus les noirs seront profonds.
Critère |
Définition |
Exemples |
---|---|---|
Luminosité |
Capacité de l’écran à émettre de la lumière. |
350 cd/m², 500 cd/m², etc. |
Contraste |
Rapport de luminosité entre le pixel le plus sombre et le pixel le plus clair de l’écran. |
3 000:1, 50 000:1, 80 000:1, etc. |
Temps de réponse
Tel qu’il est défini dans sa norme ISO (l’organisation internationale de normalisation, qui s’occupe de produire des normes dans de très nombreux domaines et pour le monde entier), le temps de réponse d’un écran est le temps que va mettre un pixel pour passer du noir au blanc, puis à nouveau au noir.
Pourquoi s’embêter à faire revenir le pixel au noir ? Le temps pour passer du noir au blanc n’est-il pas déjà caractéristique ?
Pour qu’un pixel soit coloré, il faut « allumer » avec plus ou moins d’intensité chacune des cellules rouge, verte et bleue dont nous parlions plus tôt, à l’aide d’un courant électrique. Pour faire du blanc, il faut que les trois cellules soit stimulées au maximum (rappelez-vous de la synthèse additive). Le temps nécessaire à la stimulation de ces trois cellules est donc effectivement caractéristique, mais il ne suffit pas. En effet, pour que le pixel revienne au noir, il faut maintenant que la stimulation des cellules se dissipe après que le courant électrique ait été coupé. Le temps nécessaire à la dissipation de ce courant est donc tout autant caractéristique.
Dans la pratique, il est rare qu’un pixel passe du noir (« tout éteint ») au blanc (« tout allumé »). Les pixels passent d’une couleur quelconque à l’autre, ce qui signifie que les cellules rouge, verte et bleue reçoivent plus ou moins de courant électrique, sans pour autant être à leur maximum. Pour mesurer le temps de réponse, on s’intéressera donc plutôt au temps mis pour passer du gris au blanc, puis à nouveau au gris. C’est ce temps qui est indiqué par les constructeurs sur les fiches techniques des écrans.
Le temps de réponse est un critère important lors du choix d’un écran. Il s’exprime en millisecondes (1 ms = 0,001 s), ce qui est une échelle relativement petite mais tout de même significative car on peut presque la mesurer « à l’œil nu » (du moins, on peut ressentir les différences entre deux écrans). Si le temps de réponse est trop grand, les images ne se succèderont pas bien : une sensation de « flou » se fera ressentir.
Critère |
Définition |
Exemples |
---|---|---|
Temps de réponse |
Temps nécessaire pour qu’un pixel passe du gris au blanc, puis à nouveau au gris. |
5 ms, 8 ms, 12 ms, etc. |
Angle de vision et rétro-éclairage
Avez-vous déjà essayé de regarder un écran d’ordinateur à plusieurs ? J’imagine que oui. Si vous n’étiez pas bien en face de l’écran, vous avez peut-être subi les effets néfastes d’un angle de vision trop faible : vous ne voyiez pas bien l’image.
Les angles de visions (horizontal et vertical) sont les angles auxquels on peut regarder l’écran sans que l’image ne se dégrade.

Les angles de visions varient entre 160 et 180°, selon le type de dalle (nous allons en parler dans quelques instants).
Le rétro-éclairage quant à lui est le procédé permettant de voir l’image dans le noir. Tous les écrans en sont bien sûr pourvus. Jusqu’à peu, le rétro-éclairage était effectué à la seule lumière de néons intégrés à l’écran. Aujourd’hui, on utilise plutôt des LED, ce qui permet de réduire l’épaisseur et la consommation électrique des écrans.
Critère |
Définition |
Exemples |
---|---|---|
Angles de vision |
Angles (horizontal et vertical) auxquels on peut regarder l’écran sans que l’image ne se dégrade. |
160°, 178°, etc. |
Rétro-éclairage |
Eclairage de l’écran permettant de l’utiliser dans le noir. |
- |
Fréquence
La fréquence d’un écran LCD est une caractéristique plutôt secondaire, le temps de réponse étant un critère plus significatif. En effet, quel que soit l’écran, une fréquence de 60 Hz convient tout à fait. Certains modèles permettent de monter à 75 Hz, mais cela a souvent pour effet de dégrader l’image… et de faire mal aux yeux ! >_
Aujourd’hui, on commence à voir apparaître des écrans capables de doubler cette fréquence et donc de monter à 120 Hz. Dans ce cas, il est recommandé d’utiliser cette fréquence afin de diminuer la rémanence (c’est-à-dire le temps que met l’écran à effacer une image après en avoir affiché une nouvelle). Cela dit, ces écrans sont peu nombreux, plus chers et la rémanence dépend aussi du temps de réponse. Avec certaines cartes graphiques, cette fréquence élevée permet même de jouer en 3D stéréoscopique.